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Complex and correlated quantum systems with promise for new
functionality often involve entwined electronic degrees of free-
dom. In such materials, highly unusual properties emerge and
could be the result of electron localization. Here, a cubic heavy
fermion metal governed by spins and orbitals is chosen as a
model system for this physics. Its properties are found to origi-
nate from surprisingly simple low-energy behavior, with 2 distinct
localization transitions driven by a single degree of freedom at a
time. This result is unexpected, but we are able to understand
it by advancing the notion of sequential destruction of an SU(4)
spin–orbital-coupled Kondo entanglement. Our results implicate
electron localization as a unified framework for strongly corre-
lated materials and suggest ways to exploit multiple degrees of
freedom for quantum engineering.

quantum criticality | spin–orbital entwining | electron localization–
delocalization transition | heavy fermion compounds | Kondo destruction

S trongly correlated electron systems represent a vibrant fron-
tier in modern condensed-matter physics. They often contain

multiple degrees of freedom, which may be harnessed for future
applications in electronic devices. One famous example is the
manganites, in which both spin and orbital degrees of freedom
play an important role (1). Others are the iron-based super-
conductors (2) and fullerides (3). In the cuprates, charge order
emerges and interplays with the spin degrees of freedom to influ-
ence their low-energy properties (4, 5). Even in magic-angle
graphene, the physics likely depends on both the spin and val-
ley degrees of freedom (6). These systems display a rich variety of
exotic properties at low energies (4–12). Finding simplicity out of
this complexity is a central goal of the field. An emerging notion
is that electron localization may be an organizing principle that
can accomplish this goal (13).

Results
We have chosen heavy fermion materials as a setting for our
study because they can be readily tuned to localization transi-
tions and display sharp features thereof. The f electron’s spin
in a heavy fermion compound corresponds to a well-defined
local degree of freedom. At the same time, it is still sufficiently
coupled to the conduction electrons that its behavior can be
probed through the latter. In the ground state, Kondo entan-
glement generally leads to the formation of a many-body spin
singlet between the local moment and conduction electrons.
Electronic localization of this electron fluid can then be realized
as a function of a nonthermal control parameter (8–11, 14–18)
and has been understood in terms of the destruction of Kondo
entanglement (19–22). The accompanying strange-metal behav-
ior, the onset of magnetic ordering of the liberated spins, and
unconventional superconductivity are prominent features (8–11,
14–18) that make this transition both readily observable and
broadly important.

To explore the intricate interplay of multiple quantum num-
bers in this setting, a local degree of freedom in addition to the

electron’s spin should come into play. The simplest such case in
heavy fermion systems may arise in cubic Ce-based compounds.
Due to strong intraatomic spin–orbit coupling, the spin and
orbital degrees of freedom of the Ce 4f 1 electron are described
in terms of the total angular momentum J that encompasses
both spins (dipoles) and higher multipolar moments. Ce- and
Yb-based heavy fermion materials often have crystalline sym-
metries lower than cubic. In that case, the lowest crystal electric
field (CEF) level would be a Kramers doublet. In the cubic case,
however, symmetry allows for CEF levels with higher degener-
acy, such as the 4-fold Γ8 level, in the case of both the [Xe]4f 1

wavefunction of a Ce+3 ion (for the total angular momentum
J = 5/2) and the [Xe]4f 13 wavefunction of a Yb+3 ion (for
J = 7/2). When this level is the lowest in energy, we end up
with 1 f electron (or hole in the Yb-based systems) occupy-
ing a 4-fold degenerate local level, which can be characterized
by spin and orbital quantum numbers (23). This is indeed the
case in the intermetallic compound Ce3Pd20Si6 (Fig. 1A and SI
Appendix, section S4). In zero field, it is at first the quadrupolar
moments that order into an antiferroquadrupolar (AFQ) phase
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Fig. 1. Crystal structure and ordered phases of the heavy fermion com-
pound Ce3Pd20Si6. (A) Cubic crystal structure of space group Fm3̄m (25) with
the 2 Ce sites 4a (Ce1, red) and 8c (Ce2, blue), both with cubic point symme-
try, forming a face-centered cubic lattice of lattice parameter a = 12.275 Å
(26) and a simple cubic lattice of half the lattice parameter, respectively.
The polyhedra around Ce1 are made up of Si and Pd and those around
Ce2 of Pd only. This structure persists down to at least 40 mK, as shown
by high-resolution neutron diffraction measurements (27). (B) Temperature–
magnetic-field phase diagram for fields B =µ0H applied along [0 0 1]. The
phase boundaries are determined from specific heat data by Ono et al. (28)
(TIII Ono, TII Ono, and TII′ Ono refer to anomalies upon entering phases III,
II, and II’, respectively), and our magnetostriction [λ(B)max and λ(B)min mark
the positions of the maxima and minima in λ(B) (SI Appendix, Fig. S1B)] and
thermal expansion data [α(B)max and α(B)min mark the positions of the max-
ima and minima of α(T) (SI Appendix, Fig. S1C)]. Phase I is paramagnetic,
and the order of phases II and III was identified as AFQ and AFM order of
moments on the 8c cite, respectively; the nature of the order of phase II’
remains to be identified (24). Neutron scattering has not detected any order
associated with the 4a site (24). Phase III is isotropic with respect to the field
direction, but phase II extends to fields above 10 T for fields along [1 1 0]

and [1 1 1] (28). Thus, it is advantageous to study B‖[0 0 1], as done in the
present work.

with ordering wave vector [1 1 1] at TQ ∼ 0.4 K; with fur-
ther decreasing temperature, the dipolar (magnetic) moments
undergo antiferromagnetic (AFM) ordering, with the ordering
wave vector [0 0 0.8] at TN ∼ 0.25 K, as shown by recent neutron

scattering experiments (24). Both orders are due to Ce atoms on
the crystallographic 8c site.

As typical for heavy fermion systems, the many-body ground
state is readily tunable by external parameters such as magnetic
field. Previous work on Ce3Pd20Si6 polycrystals (15) indeed
revealed the suppression of TN at a critical field BN. Quan-
tum criticality was revealed by electrical resistivity and specific
heat measurements; the temperature dependencies were found
to be different from the expectations (29) of the conventional
theory based on order parameter fluctuations. Measurements
of magnetotransport revealed a jump of the Hall coefficient
and magnetoresistance in the zero-temperature limit across BN,
which implicates a sudden reconstruction from large to small
Fermi surface with decreasing field, as expected for a localization
transition of Kondo destruction type (15). When single crystals
became available (SI Appendix, section S1), the phase diagram
was mapped out for different field orientations (28). The AFM
transition is suppressed isotropically, implying that the quan-
tum critical behavior at BN observed in polycrystals captures the
behavior of the single crystals. By contrast, the AFQ transition
is suppressed anisotropically (24, 28). The study of the inter-
play between spin and orbital degrees of freedom thus requires
measurements on single crystals, which we carry out in the
present work.

We chose to apply a magnetic field along the crystallographic
[0 0 1] direction, which suppresses the AFQ phase at a relatively
small field BQ (SI Appendix, section S2). The temperature–
magnetic-field phase diagram for this direction is shown in
Fig. 1B. The AFM phase (phase III) is suppressed at BN ∼ 0.8 T,
whereas the AFQ phase (phase II) is suppressed at BQ ∼ 2 T.
Both phase transitions have been found to be continuous by neu-
tron scattering experiments (24). The continuous nature of the
transition at BQ is also evidenced by the phase transition anoma-
lies in specific heat (28), magnetostriction (SI Appendix, Fig. S1 A
and B), and thermal expansion data (SI Appendix, Fig. S1C). The
notion (15) that the Fermi surface is large at B >BN appears to
have 2 implications. First, no further jump is to be expected at
larger fields. Indeed, it has been taken for granted that electron
localization takes place only once even in the case with multiple
degrees of freedom. Second, the quantum critical behavior at BQ

should be very different from that near BN.
Surprisingly, we find strange-metal behavior near BQ that is

strikingly similar to that near BN, as illustrated by the power-law
exponent a of the temperature-dependent electrical resistivity
(ρ= ρ0 +A′ ·T a) in the quantum critical fans anchored at BQ

and BN, respectively (Fig. 2A). Indeed, at BQ, the electrical
resistivity ρ is linear in temperature down to very low temper-
atures (Fig. 2B), and the specific heat coefficient c/T shows
a logarithmic divergence (Fig. 2C, right axis). In addition, the
thermal expansion coefficient α/T shows a stronger than loga-
rithmic divergence (Fig. 2C, left axis), consistent with a diverging
Grüneisen parameter Γ∼α/c. At fields away from BQ, Fermi
liquid (FL) behavior, with the form ρ= ρ0 +A ·T 2, is recov-
ered in the electrical resistivity (Fig. 2B, at temperatures below
the arrows). The A coefficient, extracted from the respective FL
regimes (SI Appendix, Fig. S2), is strongly enhanced toward BN

and BQ (Fig. 2D). To further characterize the behavior near
BQ, we have measured the isothermal field dependence of the
electrical resistivity (Fig. 3 A–C) and the Hall resistivity (Fig. 3
D–F) across this critical field. They reveal cross-over signatures
which can be quantified following the procedures established
previously (10, 14, 15) (SI Appendix, section S3). The character-
istic parameters extracted from the analysis at each temperature
are the full width at half maximum (FWHM) of the cross-over
(Fig. 3G), the cross-over height ∆A (Fig. 3H), and the cross-
over field B∗ or, equivalently, the field-dependent cross-over
temperature scale T ∗ (Fig. 4A). The pure power-law behavior
of the FWHM is seen as a straight line in a double-logarithmic
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Fig. 2. Signatures of quantum criticality at the border of the AFQ phase in
Ce3Pd20Si6. (A) Contour plot of the resistivity exponent a of ρ= ρ0 + A′ · Ta

in the temperature–magnetic-field phase diagram for B =µ0H‖[0 0 1]. To
match the critical fields of our electrical resistivity sample, the fields of
the phase transition lines (symbols) in Fig. 1B were slightly rescaled (SI
Appendix, section S1). (B) Temperature-dependent electrical resistivity for
selected magnetic fields B =µ0H‖[0 0 1]. Curves with fields above 1.5 T are
successively shifted downward by 3 µΩcm for better readability. The arrows
indicate the temperatures down to which linear-in-T behavior is observed,
suggesting a critical field close to 1.73 T. (C) Thermal expansion coefficient
(left) and specific heat coefficient (right) vs. temperature near the respective

plot (Fig. 3G); it extrapolates to infinite sharpness in the
zero-temperature limit and thus a jump in the Fermi surface. The
power is 1 within error bars (Fig. 3 legend) for both the magne-
toresistance and the Hall cross-over at BQ, similar to what was
previously found for the quantum critical point (QCP) at the bor-
der of the AFM phase in both Ce3Pd20Si6 (15) and YbRh2Si2
(10, 14). Note that, in the low-temperature limit, the change
∆n in the effective charge carrier concentration across BQ, esti-
mated using a simple spherical Fermi-surface 1-band approach,
is sizeable: It is about 0.35 electrons per Ce atom at the 8c
site (Fig. 3H).

While a change in Fermi surface per se could come from a
Lifshitz transition, our observations near BQ (and BN) are very
different. Lifshitz transitions for 3D Fermi surfaces, as observed
in the high-field regime of YbRh2Si2 (31), take place in the
Fermi-liquid part of the phase diagram (32) and give rise to
only smooth evolutions of the Hall coefficient. Instead, strange-
metal behavior accompanied by a sizeable jump of the Fermi
surface is the hallmark of unconventional quantum criticality
driven by Kondo destruction. The question, then, is how mul-
tiple stages of Kondo destruction may arise under the tuning
of a single control parameter. We consider a multipolar Kondo
model that contains a lattice of local moments with a 4-fold
degeneracy (classified as Γ8 by the crystalline point group sym-
metry; SI Appendix, section S4), whose spin and orbital states
are described by σ and τ , respectively, and conduction elec-
trons, ckστ , as sketched in Fig. 4D. The Γ8 moments are Kondo
coupled to the conduction electrons, and the coupling con-
stants Jκ

K with κ=σ, τ ,m , respectively, describe the interaction
of σ, τ , and σ⊗ τ with the conduction-electron counterparts.
The local moments also interact with each other by the RKKY
exchange interactions I κ

ij between sites i and j which, for the
purpose of computational feasibility, we have chosen to be of
Ising type (SI Appendix, section S5). In the extended dynam-
ical mean-field theory (SI Appendix, section S5), this will be
described in terms of the coupling between the local moments
and bosonic baths φκ, with coupling constants gκ. We are
then led to analyze the multipolar Bose–Fermi Kondo (BFK)
model as an effective model for the Kondo lattice, which is
described by the Hamiltonian (see SI Appendix, section S5 for
more details)

HBFK =HK +HBK +HB0(φσ, φτ , φm), [1]

with HBK = gσ σ
z φσ + gτ τ

z φτ + gm (σz ⊗ τ z )φm . Here, HK

describes the Kondo coupling between the local spin–orbital
moments and the conduction electrons. In addition, HBK

expresses the Bose–Kondo coupling between the local moments
and the bosonic baths whose dynamics are specified by HB0. For
the pure (fermionic) Kondo part, our model corresponds to an
exactly screened Kondo problem (33), and is SU(4) symmetric
when Jκ

K is the same for κ=σ, τ ,m . Even when the SU(4) sym-
metry is broken, the system flows to the exactly screened (Fermi
liquid) SU(4) Kondo fixed point (34, 35). The model in the pres-
ence of bosonic Kondo couplings has not been studied before.
Based on what is known for the SU(2) Bose–Fermi Kondo model
(36, 37), we expect that the overall phase diagram of the present
model with different kinds of symmetries in the SU(4) space
is captured by the calculations with SU(4)-symmetric Kondo
couplings and Ising-anisotropic bosonic couplings (SI Appendix,
section S4). We have determined the zero-temperature phase

critical fields BQ (which are close to 1.95 T for the thermal expansion sam-
ple and 1.75 T for the specific heat sample [SI Appendix, section S1]). (D) A
coefficient of the FL part (main text) of the electrical resistivity vs. applied
magnetic field B =µ0H. The error bars represent standard deviations of the
fit. Inset expands the field range around BQ, revealing the divergence of A.
Lines are guides to the eyes.
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Fig. 3. Magnetotransport isotherms across the QCP at the border of the AFQ phase in Ce3Pd20Si6. (A) Electrical resistivity vs. magnetic field at 100 mK. The
solid red line represents a linear background contribution. (B) Difference of electrical resistivity and the background fit of A. The solid red line represents a
phenomenological cross-over fit (SI Appendix, section S3). (C) Selected scaled magnetoresistance isotherms vs. scaled magnetic field (data points), together
with the cross-over fits (solid lines). An extended field range is shown in SI Appendix, Fig. S3. (D) Hall resistivity vs. magnetic field at 60 mK, for 2 different
field directions. The solid gray line represents a fit to the data for fields along [1 1 1] for which no quantum criticality exists near 2 T (28, 30) and for which
ρH is simply linear in B. The solid red line is a cross-over fit (SI Appendix, section S3) to the data for fields along [0 0 1]. Its low-field slope is fixed to the
slope of the data for fields along [1 1 1]. The full field range is shown in SI Appendix, Fig. S4. (E) ρH(B) data at 910 mK. Subtraction of the data for the field
along [1 1 1] singles out the contribution due to the QCP at BQ in the ρH(B‖[0 0 1]) data. (F) Selected scaled derivatives of the Hall resistivity cross-over fits
with respect to field vs. scaled magnetic field. (G) FWHM of the cross-overs in magnetoresistance in C and the Hall resistivity derivatives in F. The straight
lines are best fits to FHWM∝ Ta, with a = 1.05± 0.05 and 0.97± 0.05 for the magnetoresistance and Hall cross-over, respectively (SI Appendix, Fig. S5).
(H) Step heights of the magnetoresistance and Hall resistance cross-overs. Indicated in red is the effective charge carrier concentration change, estimated
using a spherical Fermi-surface 1-band approach. The thick gray lines in C and F correspond to extrapolations to T = 0, where according to the FWHM the
cross-overs are sharp steps (“jumps”).

diagram of this SU(4)-based Bose–Fermi Kondo model via cal-
culations using a continuous-time quantum Monte Carlo method
(SI Appendix, section S5).

The theoretical phase diagram is illustrated in Fig. 4B, as a
function of g1 = gτ + gσ and g2 = gτ − gσ , for fixed non-zero val-
ues of gm and Jκ

K. Consider a generic direction (cut δ). In phase
“σ, τ Kondo,” both the spin and orbital moments are Kondo
entangled, which gives rise to an SU(4)-symmetric electron fluid
(Fig. 4 C and E, Right). Upon moving toward the left (against
the direction of arrow δ), this state first undergoes the destruc-
tion of the Kondo effect in the orbital sector at one QCP (stars
in Fig. 4 B and C). This drives the system into a phase in which

only the spin moments form a Kondo singlet with the conduc-
tion electrons (phase “σ Kondo, τ KD” in Fig. 4 B and C and
E, Left). It then, at the next QCP (squares in Fig. 4 B and C),
experiences the destruction of the Kondo effect in the spin sec-
tor, leading to a fully Kondo destroyed state (phase “σ, τ KD”
in Fig. 4 B and C). Consequently, in a multipolar Kondo lattice
system, there will be 2 distinct QCPs associated with a sequence
of Kondo destructions. At each of the QCPs, the Fermi sur-
face undergoes a sudden reconstruction (circles in Fig. 4C),
which explains the jumps inferred from the Hall coefficient and
magnetoresistance data. For a single-band jellium-like electronic
fluid, our theory implies an integer jump of the electron count
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Fig. 4. Two-stage Kondo destruction in Ce3Pd20Si6. (A) Experimental
temperature–magnetic-field phase diagram from Fig. 1B, with T* scales
across which the Kondo entanglement in the spin and orbital channel breaks
up at 2 consecutive QCPs, marked by the red square (at BN) and the red
star (at BQ), respectively. The T* scales at BN are taken from Hall resistivity
[T*(ρH)] and the magnetoresistance [(T*(ρ)] measurements on a polycrystal

at each QCP. Any real material would, however, show devia-
tions from this equality, as also seen here (above). The precise
statement is that a jump in the electron count and Fermi sur-
faces must be manifested in the extrapolated zero-temperature
limit of the Hall cross-over, as we have demonstrated. We stress
that an applied magnetic field is expected to weaken magnetic
order more rapidly (∼B) than the Kondo processes (∼B2);
related considerations apply to the quadrupolar sector. Thus,
the sequential Kondo destruction happens upon decreasing the
magnetic field, i.e., from right to left in the experimental phase
diagram (Fig. 4A).

We have thus demonstrated that, despite the genuine inter-
mixing of the 2 degrees of freedom in the many-body dynamics,
a remarkable separation of their fingerprints occurs in the sin-
gular physics of quantum criticality: The magnetic-field tuning
realizes 2 stages of quantum phase transitions, which are respec-
tively dictated by the Kondo destruction of the spin and orbital
sectors.

Discussion
To put this finding in perspective, we recall that in spin-
only systems, experiments have provided extensive evidence
for Kondo destruction in AFM heavy fermion compounds
(9, 10, 14, 15, 38, 39). From studying a spin–orbital heavy
fermion system, we have shown that Kondo destruction is a
general phenomenon and may also occur if degrees of free-
dom other than spin decouple from the conduction electrons.
This demonstrates Kondo destruction as a general framework
for both beyond-Landau quantum criticality and the electron
localization–delocalization transition in metallic heavy fermion
systems. Our analysis of the multipolar degrees of freedom also
relates to the purely orbital case, as realized for instance in the
Pr-based heavy fermion systems PrV2Al20 (40) and PrIr2Zn20

(41). These materials show unusual multipolar quantum criti-
cality, although Kondo destruction has not yet been explored.
Future studies may reveal whether electron localization occurs
in these orbital-only heavy fermion systems as well and con-
tributes to nucleating phases (42, 43)—including unconventional
superconductivity (44, 45).

More generally, we have demonstrated that strange-metal
properties occur at each stage of the electron localization tran-
sition. This finding connects well with other classes of strongly
correlated systems in which strange-metal behavior has also
been linked to electron localization. In the high-Tc cuprate
superconductors, electron localization as suggested by a pro-
nounced change of the Fermi surface (4, 7) and a divergence
of the charge carrier mass (5) appears near the hole doping
for optimal superconductivity, where strange-metal properties
arise. In organic systems, electron localization has also been evi-
denced in connection with strange-metal behavior and optimal

(pc) (15). The corresponding T* scales at BQ, extracted from the magne-
totransport cross-overs in Fig. 3 for our transport single crystal (sc), were
slightly rescaled in B to match the higher critical field of the single crys-
tals defining the phase boundaries (SI Appendix, section S1). The shaded
regions with the spin and orbital symbols visualize the AFM and AFQ phases,
respectively. (B) Theoretical phase diagram (at T = 0) of the BFK model in
the g1− g2 plane. Red squares and stars mark the spin and orbital Kondo
destruction QCPs, respectively. The thick black arrow represents a generic
trajectory in the parameter space. The orange triangle represents the spe-
cial case g2 = 0, where gτ = gσ and the 2 transitions occur simultaneously.
(C) Schematic of the sequential Kondo destruction transitions, from a phase
with Kondo destruction (KD) in both the spin (σ) and orbital (τ ) chan-
nels, via a phase where only the spin is Kondo screened, to a phase with
full Kondo screening. (D) Schematic of the 4-fold degeneracy of the Γ8

ground state. (E) Sketches of the Kondo entangled states with spin-only
(Left) and full Kondo entanglement (Right). The horizontal bars represent
local degrees of freedom and the yellow plane and circles the conduction
electrons.
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superconductivity (12). In the graphene superlattices with a
magic-angle twist, whose electronic states may also satisfy an
SU(4) symmetry from the combination of the spin and valley
degrees of freedom, transport and quantum oscillation measure-
ments (6) have implicated a “small” Fermi surface of the charge
carriers doped into a Mott insulator, thereby raising the possibil-
ity of an electron localization–delocalization transition underly-
ing the superconductivity. As such, our work sheds light on the
breakdown of the textbook description of electrons in solids and
points to electron localization as a robust organizing principle
for strange-metal behavior and, by extension, high-temperature
superconductivity.

Our system contains strongly correlated and entwined degrees
of freedom; the crystalline symmetry dictates the strong inter-
mixing of the spin and orbital quantum numbers. Yet, near each
of the 2 QCPs, there is a clear selection of the orbital or spin
channel that drives the quantum critical singularity. This remark-
able simplicity, developed out of the intricate interplay among
the multiple degrees of freedom, elucidates the physics of com-
plex electron fluids. This understanding may also impact strongly
correlated systems beyond the realm of materials such as meso-
scopic structures (46) and quantum atomic fluids (47, 48), where
localization–delocalization transitions may also play an impor-
tant role. Finally, the sequential localization we have advanced
may be viewed as selectively coupling only part of the system

to an environment. This notion relates to ideas for reduced
dephasing within a logical subspace (49) and may as such inspire
additional settings for quantum technology.

Materials and Methods
Materials and methods are described in SI Appendix.
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