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Insulating states can be topologically nontrivial, a well-estab-
lished notion that is exemplified by the quantum Hall effect and
topological insulators. By contrast, topological metals have not
been experimentally evidenced until recently. In systems with
strong correlations, they have yet to be identified. Heavy-fermion
semimetals are a prototype of strongly correlated systems and,
given their strong spin-orbit coupling, present a natural setting
to make progress. Here, we advance a Weyl–Kondo semimetal
phase in a periodic Anderson model on a noncentrosymmetric lat-
tice. The quasiparticles near the Weyl nodes develop out of the
Kondo effect, as do the surface states that feature Fermi arcs. We
determine the key signatures of this phase, which are realized in
the heavy-fermion semimetal Ce3Bi4Pd3. Our findings provide the
much-needed theoretical foundation for the experimental search
of topological metals with strong correlations and open up an
avenue for systematic studies of such quantum phases that natu-
rally entangle multiple degrees of freedom.
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S trongly correlated electrons represent a vibrant field that
continues to expand its horizon. In heavy-fermion systems,

strong correlations make their ground states highly tunable and
give rise to a rich phase diagram that features antiferromag-
netic order, Kondo-screened, and other paramagnetic phases,
and beyond-Landau quantum-phase transitions (1, 2). In the sim-
plest cases, these systems can be considered in terms of the local
moments originating from the f electrons that Kondo couple to
the spins of the conduction electrons. The interaction generates
the Kondo spin-singlet ground state; the ensuing entanglement
with the conduction electrons converts the local moments into
quasiparticles that can hybridize with the conduction electrons.
This leads to a metal with a large, strongly renormalized effec-
tive carrier mass, which is the hallmark of the heavy-fermion
system classification. The resulting state could be a heavy-
fermion metal or a Kondo insulator, depending on whether the
chemical potential lies within or falls between the hybridized
bands (3–5). Electronically intermediate between the two cases
are heavy-fermion semimetals (6–13). Several of these have
a broken inversion symmetry, including CeRu4Sn6 (6, 7) and
Ce3Bi4Pd3 (9).

Semimetal systems are being theoretically studied in the non-
interacting limit with spin-orbit coupling, which plays an essential
role in obtaining topological phases of electronic matter (14–17).
The Weyl semimetal in three dimensions (3D) was recently evi-
denced experimentally (18–20). It possesses bulk excitations in
the form of chiral fermions, with massless relativistic dispersions
near pairs of nodal points in the momentum space, as well as sur-
face states in the form of Fermi arcs (21–24). Because both the
bulk and surface states are gapless, one can expect that the Weyl
semimetals are particularly susceptible to the influence of elec-
tron correlations. Moreover, strong correlations in nonperturba-
tive regimes typically mix different degrees of freedom in gener-
ating low-energy physics; thus, in any strongly correlated Weyl
semimetal, the low-energy electronic excitations are expected
to involve degrees of freedom such as spin moments, which
may be harnessed for such purposes as information storage and
retrieval.

In this work, we report the discovery of a Weyl–Kondo
semimetal (WKSM) phase in a concrete microscopic model on a
3D noncentrosymmetric lattice. This model contains the strongly
correlated 4f electrons and a band of conduction spd elec-
trons, respectively. It is realistic in that it captures the inversion-
symmetry breaking and spin-orbital coupling in a tunable way.
In the regime where the electron–electron repulsion is much
larger than the width of the conduction-electron band, the
interaction-induced renormalization factor can be very large. In
addition, because the inversion-symmetry breaking term, spin-
orbit coupling, and other electronic couplings are renormal-
ized in very different ways, it is a priori unclear whether any
Weyl state can be realized in a robust way. Our work advances
an affirmative answer in this well-defined microscopic model.
Moreover, we demonstrate the key signatures of the WKSM
phase, which turn out to be realized in several heavy-fermion
compounds.

The Hamiltonian for the periodic Anderson model to be
studied is

H =Hd + Hcd + Hc . [1]

For a proof-of-concept demonstration, we consider a cubic sys-
tem in which the breaking of inversion symmetry can be read-
ily incorporated. This is a diamond lattice, which comprises two
interpenetrating face-centered cubic lattices A and B (Fig. 1A).
We choose this lattice because it is nonsymmorphic, and, in the
case of noninteracting electrons, band touching is enforced by
its space-group symmetry (25). The model contains d and c elec-
trons, corresponding to the physical 4f and spd electrons, respec-
tively. The first term, Hd , describes the d electrons with an energy
level Ed and a Coulomb repulsion U . The coupling between the
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Fig. 1. The 3D noncentrosymmetric lattice and associated Brillouin zone
(BZ). (A) Diamond lattice with hopping t and onsite energy ±m differenti-
ating A, B sublattices. The solid lines connect nearest neighbors. (B) Inter-
locking tetrahedral sublattice cells illustrating how the distinction between
the A and B sublattices (zincblende structure) invalidates the inversion cen-
ter lying on the point marked “X.” (C) The BZ of the diamond lattice, with
Weyl nodes shown in blue/red and high symmetry contour used for Fig. 2
in green.

two species of electrons is described by a bare hybridization of
strength V . The conduction-electron Hamiltonian Hc realizes
a modified Fu–Kane–Mele model (26). Each unit cell has four
species of conduction electrons, denoted by sublattices A and B
and physical spins ↑ and ↓: ΨT

k =
(
ck↑,A ck↑,B ck↓,A ck↓,B

)
.

There is a nearest-neighbor hopping t (chosen as our energy
unit) and a Dresselhaus-type spin-orbit coupling of strength λ.
The broken inversion symmetry, Fig. 1B, is captured by an onsite
potential m that staggers between the A and B sublattices (17,
27). The band basis is arrived at by applying a canonical trans-
formation on Hc written in the sublattice and spin basis. It cor-
responds to a pseudospin basis (27), defined by the eigenstates
| ± D〉. We fix the d -electron level to below the conduction-
electron band and consider the case of a quarter filling, corre-
sponding to one electron per site. Further details of the model
are given in Materials and Methods.

We consider the regime with the onsite interaction U being
large compared with the bare c-electron bandwidth (U /t →∞).
We approach the prohibition of d fermion double occupancy by
an auxiliary-particle method (28): d†iσ = f †iσbi . Here, the f †iσ (bi)
are fermionic (bosonic) operators, which satisfy a constraint that
is enforced by a Lagrange multiplier `. This approach leads to a
set of saddle-point equations, where bi condenses to a value r ,
which yields an effective hybridization between the f quasipar-
ticles and the conduction c electrons. The details of the method
are described in Materials and Methods.

The corresponding quasiparticle band structure is shown in
Fig. 2. Nodal points exist at the Fermi energy, in the bands for
which the pseudospin (defined earlier) has an eigenvalue −D .
They occur at the wave vectors kW , determined in terms of the
hybridized bands,

E(+,+)
−D (kW ) = E(−,+)

−D (kW ),

E(+,−)
−D (kW ) = E(−,−)

−D (kW ), [2]

for the upper and lower branches, respectively. The Weyl nodes
appear along the Z lines (lines connecting the X and W points) in
the three planes of the BZ, as illustrated in Fig. 1C. This is spe-
cific to the zincblende lattice. For other types of lattices, the Weyl
nodes may occur away from the high-symmetry parts of the BZ.

We note that the bands near the Fermi energy have a width
much reduced from the noninteracting value. This width is given
by the Kondo energy. Compared with the bare width of the
conduction-electron band, the reduction factor corresponds to
r2 (which is ∼0.067 in the specific case shown in Fig. 2). We
remark that, in the absence of the hybridization between the f
and conduction electrons, the ground state would be an insulator
instead of a semimetal: The f electrons would be half-filled and
form a Mott insulator, while the conduction electrons would be

empty, forming a band insulator. All these imply that the nodal
excitations develop out of the Kondo effect.

To demonstrate the monopole flux structure of the Weyl
nodes, we calculate the Berry curvature in the strong cou-
pling regime. We show the results at the kz = 2π boundary of
the 3D BZ, in the gray plane of Fig. 1C, whose dispersion is
shown in Fig. 3B. In Fig. 3B, the arrows represent the field’s
unit-length 2D projection onto the kxky -plane, Ω̂(kx , ky , 2π) =

|~Ω(kx , ky , 2π)|−1
(
Ωyz (kx , ky , 2π), Ωzx (kx , ky , 2π)

)
. The Weyl

node locations (blue/red circles) are clearly indicated by the
arrows flowing in or out, representing negative or positive
monopole “charge.”

We next analyze the surface states. Focusing on the (001)
surface, we find the following energy dispersion for the surface
states:

E(kx , ky) = −2 sin

(
kx
4

)
sin

(
ky
4

)
+

V 2
s + (Es)

2

2Es

−

√(
2 sin

(
kx
4

)
sin

(
ky
4

)
− V 2

s − (Es)
2

2Es

)2

+ V 2
s ,

[3]

where we define the parameters (Vs ,Es , µs) = (rV ,Ed + `,

−(rV )2/(Ed + `)). (For the derivation, see Supporting Infor-
mation.) In Fig. 4, we show the energy dispersion along a high-
symmetry path in the k space. The solid lines represent the
surface states, and the dashed lines show where they merge with
the bulk states and can no longer be sharply distinguished. The
surface electron spectrum has a width that is similarly narrow as
the bulk electron band (compare Fig. 4B with Fig. 3A), imply-
ing that the surface states also come from the Kondo effect.
The surface Fermi arcs (where E(kx , ky) = 0) connect the Weyl
nodes along kx = 0 and ky = 0, separating the positive and neg-
ative energy surface patches, marked by the solid black lines in
Fig. 4A.

As is typical for strongly correlated systems, the most dom-
inant interactions in heavy-fermion systems are onsite, making
it important to study them in lattice models (as opposed to the
continuum limit). Our explicit calculations have been possible
using a well-defined model on a diamond lattice that permits
inversion-symmetry breaking. Nonetheless, we expect our con-
clusion to qualitatively apply to other noncentrosymmetric 3D
systems. Finally, the WKSM is expected to survive the effect of a
time-reversal symmetry breaking term, such as a magnetic field;
this is illustrated in Supporting Information.

We now turn to the implications of our results for heavy-
fermion semimetals. The entropy from the bulk Weyl nodes
will be dictated by the velocity v∗, and the corresponding

Fig. 2. Energy dispersion of the bulk electronic states. Shown here is the
energy vs. wave vector k along a high-symmetry path in the BZ, defined
in Fig. 1C. The bottom four bands near EF show a strong reduction in the
bandwidth. The bare parameters are (t, λ,m, Ed,V) = (1, 0.5, 1,−6, 6.6). In
the self-consistent solution, r ' 0.259 and ` ' 6.334.
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Fig. 3. Characterization of the Weyl nodes. The plots are in the (kx, ky )
plane of the four Weyl nodes at kz = 2π (gray plane in Fig. 1C). (A) Energy
dispersion, showing the band degeneracies at the Weyl node points and a
strong reduction of the bandwidth. (B) The distribution of the Berry curva-
ture field. The bare parameters are the same as in Fig. 2.

specific heat per unit volume has the following form (Supporting
Information):

cv ∼ (kBT/~v∗)3kB. [4]

We stress that this expression is robust against the residual inter-
actions of the nodal excitations (Supporting Information). The
utility of thermodynamical quantities as a key signature reflects
an important distinction of the WKSM from weakly correlated
Weyl semimetals. The Kondo temperature of typical heavy-
fermion systems is considerably smaller than the Debye temper-
ature. This is to be contrasted with the weakly correlated sys-
tems, in which the bandwidth of the conduction electrons is much
larger than the Debye temperature. Therefore, in a WKSM, the
nodal contributions to the entropy would dominate over the
phonon component. The corresponding form of entropy also
implies that the nodal excitations will have large contributions
to the thermopower.

Eq. 4 can be readily tested, given that there is a considerable
number of semimetallic heavy-fermion compounds (4). A non-
centrosymmetric heavy-fermion system Ce3Bi4Pd3 has recently
been discovered to display semimetal behavior based on trans-
port measurements, and its specific heat is well described in
terms of Eq. 4 (9). A fit in terms of our theoretical expression
Eq. S29 (Supporting Information) reveals an effective velocity,
v∗, that is three orders of magnitude smaller than that expected
for weakly correlated systems, reflecting the reduction in the
energy scale—the Kondo temperature for Ce3Bi4Pd3—from the
bandwidth of the latter by a similar order of magnitude (9).
This analysis provides strong evidence that Ce3Bi4Pd3 is a can-
didate WKSM system with strongly correlated Weyl nodes and
provides the motivation for further studies on such quantities
as magnetotransport and high-resolution angle-resolved pho-
toemission spectroscopy in this system. More recently, Eq. 4
has been used to fit the specific heat of another heavy-fermion
system, YbPtBi, suggesting it be another candidate WKSM
system (29).

Our theoretical results provide guidance in the search for Weyl
semimetals in other heavy-fermion systems. For instance, in the
4f -based system CeSb, Weyl physics has been suggested based
on magnetotransport measurements (30, 31). Even though any
nodes in this system are likely away from the Fermi energy,
the fact that it is a Kondo system with low-energy scales leads
to the expectation that they can be tuned toward the Fermi
energy by pressure or chemical doping, and we propose spe-
cific heat measurements and our Eq. 4 as a means of ascer-
taining the role of the 4f electrons in this system. In addi-
tion, the noncentrosymmetric CeRu4Sn6 also displays semimetal
properties (6) and has been discussed as a potential topolog-

ical system (7). Its electronic structure has been studied by
ab initio calculations combined with dynamical mean field the-
ory (6, 32) or the Gutzwiller projection method (33). While
the two types of calculations disagree on the low-energy dis-
persion and the latter study does not appear to capture the
strong renormalizations expected in a Kondo system, the exis-
tence of linearly dispersing nodes and their Weyl nature have
been suggested in the latter study. The low-temperature spe-
cific heat in single crystalline CeRu4Sn6 (34) implies the impor-
tance of the 4f electrons to the low-energy physics but does not
appear to have the form of Eq. 4. Our theoretical results sug-
gest that further thermodynamic and thermoelectrical studies
will be instructive in ascertaining the potential WKSM nature of
CeRu4Sn6.

We close with several observations. First, we have focused on a
model defined on an nonsymmorphic diamond lattice, in which,
for noninteracting electrons, the crystallographic space group
symmetry allows for a filling-enforced semimetal state (21, 25).
Our study here demonstrates that for Kondo systems defined on
such a lattice and in the presence of inversion-symmetry break-
ing, the WKSM phase arises in a robust way. On the other hand,
for noninteracting systems in 3D, a Dirac semimetal can also
arise at the phase transition between topologically distinct insu-
lating states. It will therefore be instructive to search for the
WKSM state at topological phase transitions in Kondo systems;
we leave this matter for future studies.

Second, our work provides a proof-of-principle demonstration
for the emergence of a WKSM phase in a Kondo lattice with
inversion symmetry breaking. This makes it likely that such a
phase arises in inversion-symmetry-breaking 3D Kondo lattices
with other crystallographic symmetries. The candidate WKSM
material Ce3Bi4Pd3 has a nonsymmorphic space group (220),
and its Kondo-driven Weyl nodes may very well be enforced by
its crystallographic symmetry and electron filling. Our findings
here motivate further studies that incorporate the realistic elec-
tronic structure of Ce3Bi4Pd3.

Third, in the WKSM state advanced here, the electron cor-
relations produce a zeroth-order effect given that the localized
moments of the 4f electrons underlie the Weyl excitations. Cor-
respondingly, the renormalization factors (for the nodal veloc-
ity) are extremely large, typically on the order of 102 − 103.
This distinguishes the WKSM from other types of interacting
Weyl semimetals discussed previously. The large renormaliza-
tion factor is responsible for the possibility of using thermody-
namics to probe the Weyl nodes. Our work also sets the stage
for calculations of additional signature properties for the Weyl

A B

Fig. 4. Energy dispersion of the surface electronic states. The spectrum
shows the (anti-)Weyl nodes marked with blue (red). The solid black lines
connecting the nodes represent Fermi arcs, and black dashed lines represent
the BZ around the X point. (A) High-symmetry k-space contour taken on the
BZ boundary at kz = 2π. (B) Energy dispersion of the surface state along the
path specified in A; the gray dotted line denotes the decay of the surface
states into the bulk states. The parameters are the same as in Fig. 2.
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physics, such as the optical conductivity and related dynamical
quantities.

Fourth, the context of heavy-fermion systems links the WKSM
phase advanced here with the topological Kondo insulators (5)
and the physics of their surface states (35). Nonetheless, the
WKSM as a state of matter is distinct: In the bulk, it fea-
tures strongly renormalized Weyl nodes instead of being fully
gapped; on the surface, it hosts Fermi arcs from a band with a
width of the Kondo energy, which are to be contrasted with the
surface Dirac nodes of the topological Kondo insulators. This
also dictates that the WKSM will be realized in heavy-fermion
materials that are quite different from those for the topolog-
ical Kondo insulators, as exemplified by the aforementioned
Ce3Bi4Pd3.

Finally, the emergence of a WKSM makes it natural for
quantum-phase transitions in heavy-fermion systems from such
a topological semimetal to magnetically ordered and other cor-
related paramagnetic states. Moreover, the existence of Weyl
nodes also enhances the effect of long-range Coulomb inter-
actions. While the density fluctuations of the f electrons are
strongly suppressed in the local-moment regime, it still will be
instructive to explore additional nearby phases such as charge-
density-wave order (36); other types of long-range interactions
could produce topologically nontrivial Mott insulators (37). As
such, the study of WKSM and related semimetals promises to
shed new light on the global phase diagram of quantum critical
heavy-fermion systems (4) and other strongly correlated materi-
als (38).

In summary, we have demonstrated an emergent WKSM
phase in a model of heavy-fermion systems with broken inver-
sion symmetry and have determined the surface electronic spec-
tra which reveal Fermi arcs. The nodal excitations of the WKSM
phase develop out of the Kondo effect. This leads to unique
experimental signatures for such a phase, which are realized
in a noncentrosymmetric heavy-fermion system. Our results are
expected to guide the experimental search for f -electron-based
Weyl semimetals. In general, they open the door for studying
topological semimetals in the overall context of quantum phases
and their transitions in strongly correlated electron systems and,
conversely, broaden the reach of strongly correlated gapless and
quantum critical states of matter.

Materials and Methods
The 3D Periodic Anderson Model. The three terms in the model of Eq. 1 are
presented here in more detail. The strongly correlated d electrons are spec-
ified by

Hd = Ed

∑
i,σ

d†iσdiσ + U
∑

i

nd
i↑nd

i↓. [5]

The hybridization term is as follows:

Hcd = V
∑
i,σ

(
d†iσciσ + H.c.

)
. [6]

In the above two equations, the site labeling i means i = (r, a), where r runs
over the Bravais lattice of unit cells and a runs over the two sites, a = A, B,
in the unit cell.

The conduction electron Hamiltonian Hc realizes a modified Fu–
Kane–Mele model (26) and is expressed as Hc =

∑
k Ψ†k hk Ψk, where

ΨT
k =

(
ck↑,A ck↑,B ck↓,A ck↓,B

)
, and

hk =σ0 (u1(k)τx + u2(k)τy + mτz) + λ (D(k) · σ) τz. [7]

Here, σ = (σx , σy , σz) and τ = (τx , τy , τz) are the Pauli matrices acting on
the spin and sublattice spaces, respectively, and σ0 is the identity matrix.
In the first term, u1(k) and u2(k) are determined by the conduction elec-
tron hopping, t〈ij〉 = t between nearest-neighbor sites (〈ij〉). The second

term specifies a Dresselhaus-type spin-orbit coupling between the second-
nearest-neighbor sites (〈〈ij〉〉), which is of strength λ and involves vector
D(k) =

(
Dx(k), Dy (k), Dz(k)

)
. Specifically,

u1(k) = t

(
1 +

3∑
n=1

cos(k · an)

)
, [8]

u2(k) = t
3∑

n=1

sin(k · an), [9]

Dx(k) = sin(k · a2)− sin(k · a3)− sin(k · (a2 − a1))

+ sin(k · (a3 − a1)), [10]

and Dy , Dz are obtained by permuting the fcc primitive lattice vectors an.
The canonical (unitary) transformation, Ψ̆k = S†σΨk, leads to

Hc =
∑

k

Ψ̆
†
k

(
hk+ 0

0 hk−

)
Ψ̆k, [11]

hk± = u1(k)τx + u2(k)τy + (m± λD(k))τz. [12]

We have used a pseudospin basis (27), defined by the eigenstates |±D〉with
eigenvalues

D · σ
D
| ± D〉= ± | ± D〉 [13]

where D(k) ≡ |D(k)|. The eigen energies of the | ± D〉 sectors are simply
obtained to be

ε
τ
±D = τ

√
u1(k)2 + u2(k)2 + (m± λD(k))2 [14]

where τ = (+, −). We use this transformation on the full Anderson model in
the strong coupling limit, at the saddle-point level where the Lagrange mul-
tiplier `i , which enforces the local constraint b†i bi +

∑
σ f†iσfiσ = 1, takes a

uniform value, `. This corresponds to Ξ̆k = S†σΞk. Anticipating the separabil-

ity of the | ±D〉 sectors by specifying Ψ̆T
k =

(
ψ̆T

k+, ψ̆T
k−

)
, Ξ̆T

k =
(
ξ̆T

k+, ξ̆T
k−

)
,

where ψ̆T
k± =

(
ψ̆k±,A, ψ̆k±,B

)
and ξ̆T

k± =
(
ξ̆k±,A, ξ̆k±,B

)
, we obtain the

strong coupling Hamiltonian

Hs
=
∑

k,a=±

(
ψ̆†ka ξ̆†ka

)(hka − µ12 rV12

rV12 (Ed + `)12

)(
ψ̆ka

ξ̆ka

)
, [15]

which separates as Hs= Hs
++Hs

−. We obtain the full spectra of the eight
hybridized bands,

E (τ,α)
±D (k) =

1

2

[
Es + ε̃

τ
±D + α

√(
Es − ε̃τ±D

)2
+ 4V2

s

]
, [16]

where α= (+,−) indexes the upper/lower quartet of bands, ε̃τ±D = ετ±D−µ,
and (Es, Vs) = (Ed + `, rV). In Supporting Information, we prove that the
| + D〉 sector is always gapped, whereas the | − D〉 sector allows Weyl
nodes when 0< m

4|λ| < 1, and determine µ=−V2
s /Es, which fixes the Fermi

energy at the Weyl nodes.
To determine r, `, Hs must be solved self-consistently from the saddle-

point equations

1

2Nu

∑
k,a=±

〈
ξ̆
†
kaξ̆ka

〉
+ r2

= 1,

V

4Nu

∑
k,a=±

[〈
ψ̆
†
kaξ̆ka

〉
+ H.c.

]
+ r`= 0, [17]

where Nu is the number of the unit cell. The equations are solved on a 64×
64× 64 cell of the diamond lattice, with error ε ≤ O(10−5).
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