Thermal-transport properties of CeNiSn

S. Paschena,*, B. Wanda, G. Sparna, F. Steglicha, Y. Echizenb, T. Takabatakeb

aMPI for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187 Dresden, Germany
bDepartment of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

Abstract

We present thermopower S and thermal-conductivity κ measurements on high-quality single crystalline CeNiSn along the three crystallographic axes a, b, and c in the temperature range between 100 mK and 7 K and in magnetic fields up to 8 T, applied along the a axis. Both κ and S are highly anisotropic. However, below 10 K, characteristic features that may be attributed to the opening of a pseudogap in the charge-carrier density of states (DOS) at the Fermi energy η are seen for all three crystallographic directions. These features are strongly suppressed by a magnetic field of 8 T. At the lowest temperatures we have evidence for the presence of a residual charge-carrier density, again for all the three directions. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: CeNiSn; Kondo insulator; Thermal conductivity; Thermoelectric power

The claim [1] that CeNiSn is one of the rare examples of valence-fluctuating Cerium compounds with an energy pseudogap in the electronic density of states (DOS) at η triggered strong interest in this compound. Our main concern in the present work is a potential residual DOS within the pseudogap. Thermal-transport measurements at low temperatures are a valuable tool for extracting information on such a residual DOS. In particular, measurements along the three crystallographic axes provide information on the anisotropy of the residual charge-carrier density. Our single-crystalline CeNiSn samples were grown by a Czochralski method and purified by the technique of solid-state electro-transport (SSE), which is crucial for improving the sample quality [2]. The S and κ measurements to be presented below are the first on SSE-treated CeNiSn. A comparison with low-temperature data on less pure CeNiSn [3] shows that S is more sensitive to impurities than κ.

$S(T)$ is highly anisotropic and shows several well-defined structures (Fig. 1). We interpret these $S(T)$ data in terms of a diffusion thermopower, since possible phonon-drag and paramagnon-drag contributions are expected to be small in the temperature range investigated here. In systems like CeNiSn containing both almost localized $4f$ and delocalized conduction electrons, the thermopower may be ascribed [4] to the conduction electrons, being scattered from the $4f$ electrons. In a first approximation, S is proportional to $T(\partial \ln N_e/\partial \epsilon_f - \partial \ln N_f/\partial \epsilon_h)_\eta$ where N_e and N_f are the conduction- and $4f$-electron DOS, respectively. $(\partial \ln N_f/\partial \epsilon_h)_\eta$ may reach very large values compared to the corresponding expression in d-band metals. Also $(\partial \ln N_e/\partial \epsilon_h)_\eta$ may contribute non-negligibly to S, because the charge-carrier concentration is known to decrease steeply upon cooling below $5-10 \text{ K}$ [5]. The anomalies (maxima along a and b, minimum along c-axis) between 2 and 7 K reflect extreme values in the energy derivative of N_e and/or N_f, which we relate to the opening of the pseudogap. They are strongly suppressed by a magnetic field of 8 T (Fig. 1). In the Kondo-lattice model, a destruction of the coherence gap is expected at low magnetic fields if the RKKY and the Kondo interactions are of similar strength [6]. The features in $S(T)$ at even lower temperatures are most probably the signs of a temperature-dependent DOS structure at the Fermi level within the gap. Their unusual anisotropic magnetic-field dependence indicates that the magnetic field leads to a charge redistribution in k-space.

Similar to $S(T)$, $\kappa(T)$ is highly anisotropic (Fig. 2). However, anomalous enhancements of κ are observed for...
Fig. 1. Temperature dependence of the thermopower $S(T)$ of CeNiSn at 0, 4 and 8 T along the a-, b-, and c-axis in panel (a), (b), and (c), respectively.

Fig. 2. Temperature dependence of the thermal conductivity $\kappa(T)$ of CeNiSn at 0, 4 and 8 T along the a-, b-, c-axis in panel (a), (b), and (c), respectively. The solid curve in panel (a), $\kappa_{\text{el}}^W(T)$, represents the electronic thermal conductivity along the a-axis obtained from the Wiedemann–Franz law. The insets show close-ups at low temperatures. The lines are best linear fits to the data.

all three directions: A pronounced maximum for $\kappa_a(T)$ at 3.8 K, a very shallow maximum for $\kappa_b(T)$ at 5 K, and a plateau for $\kappa_c(T)$ at 4.5 K. Application of a magnetic field leads to a reduction of all these enhancements. The electronic contribution to the thermal conductivity along the a-axis, calculated from the electrical resistivity along the a-axis under the assumption that the Wiedemann–Franz law is valid, is relevant only below 1 K (Fig. 2). Below 300 mK, κ is a linear function of T for all three directions (insets of Fig. 2) suggesting that in this temperature range the heat is predominantly carried by charge carriers. This is strong evidence for a residual charge-carrier density for all the three crystallographic directions. The anisotropic magnetic-field dependence of the linear term again points to a field-induced charge-carrier redistribution in k-space. Between 600 mK and 2 K, $\kappa \propto T^2$, a temperature dependence commonly attributed to a phononic thermal conductivity with predominant phonon–electron scattering. Making the reasonable assumption that phonon–electron scattering remains dominant up to at least 7 K, the above-mentioned enhancements in $\kappa(T)$ can be explained as follows: When the gap starts to open upon cooling below 10 K, electrons start to freeze out which reduces the phonon–electron scattering rate and leads to the observed enhancements in $\kappa(T)$. This mechanism was already proposed in Ref. [7]. Our analysis provides strong evidence for this scenario. Finally, we would like to note that the reduced Lorenz number L/L_0 measured along the a axis saturates below 200 mK to the value 1.5, which is distinctly enhanced over 1. This is a striking observation which deserves further investigation. A more detailed analysis of our data will be given elsewhere [8].

References