

Wiedner Hauptstr. 8-10/138, 1040 Wien www.ifp.tuwien.ac.at

EINLADUNG zum IFP-SEMINAR

The electronic pseudo band gap states of the full Heusler compound Fe₂VAI

Raimund Podloucky

Institute of Physical Chemistry, Universität Wien, A-1090 Wien, Austria

Host:	Ernst Bauer
Termin:	Mittwoch, 6. November 2019, 16:00 Uhr
Ort:	Institut für Festkörperphysik, TU Wien
	Wiedner Hauptstraße 8-10, 1040 Wien
	Seminarraum DC rot 07 (roter Bereich, 7. OG)

Abstract:

For Fe₂VAI the temperature dependent Seebeck coefficient *S*(*T*) and electrical resistivity $\rho(T)$ were calculated by means of density functional theory (DFT) based approaches and compared to measurements. The DFT calculations were extended in terms of a DFT/LDA+U approach with *U-J* values attributed to Fe-d like states. For simulating the general features of the measured data, a large range of *U-J* values was scanned through with *U-J* = 2.145 eV as a recommended value. For this value a very small negative indirect gap of E(X)-E(Γ) = -0.0093 eV occurs which is significantly reduced as compared to the DFT-GGA value of -0.158 eV. Charge transfer was derived by Bader's approach resulting in a significant transfer of 0.75 electronic charges to each Fe atom from AI (1.03) and V (0.48). The pseudo-gap states around the Fermi energy were analyzed in detail in terms of density of states, band structures and charge density contours. These states almost exclusively govern *S*(*T*) and $\rho(T)$. They have large dispersions and are centered at Γ and X. They consist of tails of localized V and Fe-states, dangling to the AI-site. The dispersion of the band along the k-space direction X- Γ was modelled in terms of a tight-binding ansatz, resulting in k dependent matrix elements. From our study based on the findings for *S*(*T*) and $\rho(T)$ it appears that Fe₂VAI has a very small negative and possibly zero indirect gap in the electronic structure.