

Wiedner Hauptstr. 8-10/138, 1040 Wien www.ifp.tuwien.ac.at

EINLADUNG zum IFP-SEMINAR

Microstructure and thermoelectric properties of full-Heusler compounds based on Fe₂VAI co-doped with Ta and Si

Fabian Garmroudi

	Institute of Solid State Physics, TU Wien
Host:	Ernst Bauer
Termin:	Mittwoch, 15. April 2020, 16 Uhr
Ort:	https://global.gotomeeting.com/join/683902109 (if link does not work please insert in browser by Copy/Paste) Access Code: 683-902-109

Abstract:

Thermoelectric materials are attractive candidates for recovering waste heat and other sustainable high-end technological applications. Although their thermoelectric figure of merit ZT is relatively low compared to other material classes, Fe₂VAI-based full Heusler compounds have been investigated due to their high power factor that can be attributed to a small pseudogap, where the density of states (DOS) rises sharply in both directions. Nishino et al. showed that Si-doping on the AI-site is an excellent way of optimizing the carrier concentration within the rigid band model [1]. The introduction of Ta atoms on the V-site drastically decreases lattice thermal conductivity as shown by Terazawa et al. [2]. Furthermore, band structure calculations also suggest an opening of the pseudogap and improvement of the electronic structure because of the Ta-doping.

Recently, not so much effort has been put in improving the power factor PF of Fe₂VAI-based compounds as it is already very high. Moreover, a study of the microstructure in the case of Ta/Si-co-doping is still lacking. To find out the solubility limit of Ta and Si and in order to establish a relationship between the microstructure and thermoelectric properties we investigated many different compositions of Fe₂V_{1-x}Ta_xAl_{1-y}Si_y and tuned the annealing conditions.

In this seminar I will discuss the experimental results encompassing XRD and microstructure analysis, as well as the temperature dependence of the Seebeck coefficient *S* and electrical resistivity ρ in a wide temperature range. SEM images reveal the precipitation of a Ta-/Si-rich impurity phase in some samples leading to a large variety of different microstructures which heavily depend on the annealing durations. The microstructural evolution is strongly tied to the transport properties *S* and ρ in a nontrivial manner. During the talk, I will manifest an enhancement of the Seebeck coefficient due to the Ta-doping effect as predicted by DFT calculations. Together with an optimization of the microstructure, this yields very high power factors of up to 8 mW/mK2, which is a 50% improvement compared to Fe₂V_{1-x}Ta_xAl_{1-y}Si_y -based compounds from literature [1].

References

1) Y. Nishino IOP Conf. Ser.: Mater. Sci. Eng. 18 142001 (2011)

2) Terazawa et al., Journal of Electronic Materials, Vol. 41, No. 6, 1348, (2012).