Technische Universität Wien
Institut für Festkörperphysik

Ass. Prof.
Dr. Andrej PUSTOGOW
____________________

PUSTOGOW
SPECTROSCOPY
LABORATORY

PUBLICATIONS

Researcher ID: AAK-8945-2020

ORCID: 0000-0001-9428-5083

*Asterisk indicates equal contribution.

51. High thermoelectric power factor through topological flat bands,
F. Garmroudi, I. Serhiienko, S. Di Cataldo, M. Parzer, A. Riss, M. Grasser, S. Stockinger, S. Khmelevskyi, K. Pryga, B. Wiendlocha, K. Held, T. Mori, E. Bauer, and A. Pustogow
arXiv:2404.08067.
50. SrCu(OH)3Cl, an ideal isolated equilateral triangle spin S = 1/2 model system,
S. Pal, P. Dolezal, S. A. Strøm, S. Bertaina, A. Pustogow, R. K. Kremer, M. Dressel, and P. Puphal
arXiv:2401.12098.
49. Thermoelectric power factor of composites,
A. Riss, F. Garmroudi, M. Parzer, A. Pustogow, T. Mori, and E. Bauer
Phys. Rev. Applied 21, 014002 (2024).
DOI:10.1103/PhysRevApplied.21.014002.
2023
48. Controlling frustrated magnetism on the kagome lattice by uniaxial-strain tuning,
Jierong Wang, M. Spitaler, Y.-S. Su, K.M. Zoch, C. Krellner, P. Puphal, S.E. Brown, and A. Pustogow
Phys. Rev. Lett. 131, 256501 (2023),
DOI:10.1103/PhysRevLett.131.256501, arXiv:2209.08613.
Press Release of TU Wien: Unkonventionelle Magnete: Stress reduziert Frustration (English version: Unconventional magnets: stress reduces frustration)
47. High thermoelectric performance in metallic NiAu alloys via interband scattering,
F. Garmroudi, M. Parzer, A. Riss, C. Bourgès, S. Khmelevskyi, T. Mori, E. Bauer, and A. Pustogow
Sci. Adv. 9, eadj1611 (2023),
DOI:10.1126/sciadv.adj1611, arXiv:2303.03062.
Press Release of TU Wien: Goldene Aussichten für Thermoelektrika (English version: Golden future for thermoelectrics)
Article in Die Presse: Klimanews: Strom aus Wärme gewinnen
Article in Österreich Journal: Goldene Aussichten für Thermoelektrika (Nr. 208, page 115)
Article in Kurier: Gold und Nickel machen aus Wärme Strom (Print Version 06 October 2023, page 22)
46. Negative Magnetoresistance Near the Mott Metal-Insulator Transition in the Quantum Spin Liquid Candidate κ-(BEDT-TTF)2Cu2(CN)3,
Y. Kawasugi, S. Yamazaki, A. Pustogow, and N. Tajima
J. Phys. Soc. Jpn. 92, 065001 (2023),
DOI:10.7566/JPSJ.92.065001.
45. Chasing the spin gap through the phase diagram of a frustrated Mott insulator,
A. Pustogow, Y. Kawasugi, H. Sakurakoji, and N. Tajima
Nat. Commun. 14, 1960 (2023),
DOI:10.1038/s41467-023-37491-z, arXiv:2209.07639.
Press Release of TU Wien: Die Quantenspinflüssigkeit, die gar keine ist (English version: The quantum spin liquid that isn't one)
44. From spin liquid to magnetic ordering in the anisotropic kagome Y-Kapellasite Y3Cu9(OH)19Cl8: A single crystal study,
D. Chatterjee, P. Puphal, Q. Barthélemy, J. Willwater, S. Süllow, C. Baines, S. Petit, E. Ressouche, J. Ollivier, K.M. Zoch, C. Krellner, M. Parzer, A. Riss, F. Garmroudi, A. Pustogow, P. Mendels, E. Kermarrec, and F. Bert
Phys. Rev. B 107, 125156 (2023) [Editors’ Suggestion],
DOI:10.1103/PhysRevB.107.125156, arXiv:2211.16624.
43. Upper Critical Field of Sr2RuO4 under In-Plane Uniaxial Pressure,
F. Jerzembeck, A. Steppke, A. Pustogow, Y. Luo, A. Chronister, D. A. Sokolov, N. Kikugawa, Y.-S. Li, M. Nicklas, S. E. Brown, A. P. Mackenzie, and C. W. Hicks
Phys. Rev. B 107, 064509 (2023),
DOI:10.1103/PhysRevB.107.064509, arXiv:2211.04290.
42. Pivotal role of carrier scattering for semiconductorlike transport in Fe2VAl,
F. Garmroudi, M. Parzer, A. Riss, A. Pustogow, T. Mori, and E. Bauer
Phys. Rev. B 107, L081108 (2023),
DOI:10.1103/PhysRevB.107.L081108.

41. Pressure-dependent dielectric response of the frustrated Mott insulator κ-(BEDT-TTF)2Ag2(CN)3,
R. Rösslhuber, R. Hübner, M. Dressel, and A. Pustogow
Phys. Rev. B 107, 075113 (2023),
DOI:10.1103/PhysRevB.107.075113.

40. Thermodynamic Properties of the Mott Insulator-Metal Transition in a Triangular Lattice System Without Magnetic Order,
E. Yesil, S. Imajo, S. Yamashita, H. Akutsu, Y. Saito, A. Pustogow, A. Kawamoto, and Y. Nakazawa
Phys. Rev. B 107, 045133 (2023),
DOI:10.1103/PhysRevB.107.045133, arXiv:2301.04310.

39. New Spin on Metal-Insulator Transitions,
A. Pustogow
Crystals 13, 64 (2023),
DOI:10.3390/cryst13010064.
Editorial of the Special Issue "New Spin on Metal-Insulator Transitions" in Crystals (MDPI)
2022
-- New Spin on Metal-Insulator Transitions,
Guest Editor: A. Pustogow
Special Issue in Crystals (MDPI), submission deadline 20 April 2022.
38. Tuning the Fermi liquid crossover in Sr2RuO4 with uniaxial stress,
A. Chronister, M. Zingl, A. Pustogow, Y. Luo, D. A. Sokolov, N. Kikugawa, C. W. Hicks, F. Jerzembeck, J. Mravlje, E. D. Bauer, A. P. Mackenzie, A. Georges, and S. E. Brown
npj Quantum Mater. 7, 113 (2022),
DOI:10.1038/s41535-022-00519-6, arXiv:2111.05570.
37. Anderson transition in stoichiometric Fe2VAl: High thermoelectric performance from impurity bands,
F. Garmroudi, M. Parzer, A. Riss, A. V. Ruban, S. Khmelevskyi, M. Reticcioli, M. Knopf, H. Michor, A. Pustogow, T. Mori, and E. Bauer
Nat. Commun. 13, 3599 (2022),
DOI:10.1038/s41467-022-31159-w.
Press Release of TU Wien: Thermoelektrika: Von Wärme zu Strom (English version: Thermoelectrics: from heat to electricity)
36. Multi-Center Magnon Excitations Open the Entire Brillouin Zone to Terahertz Magnetometry of Quantum Magnets,
T. Biesner, S. Roh, A. Razpopov, J. Willwater, S. Süllow, Y. Li, K. M. Zoch, M. Medarde, J. Nuss, D. Gorbunov, Y. Skourski, A. Pustogow, S. E. Brown, C. Krellner, R. Valentí, P. Puphal, and M. Dressel
Adv. Quantum Technol. 2022, 2200023 (2022),
DOI:10.1002/qute.202200023.

35. Magnetic terahertz resonances above the Neel temperature in the frustrated kagome antiferromagnet averievite,
T. Biesner, S. Roh, A. Pustogow, H. Zheng, J. F. Mitchell, and M. Dressel
Phys. Rev. B 105, L060410 (2022),
DOI:10.1103/PhysRevB.105.L060410.

34. Review Article: Thirty-Year Anniversary of κ-(BEDT-TTF)2Cu2(CN)3: Reconciling the Spin Gap in a Spin-Liquid Candidate,
A. Pustogow
Solids 3, 93–110 (2022),
DOI:10.3390/solids3010007.

2021
33. Tuning Charge Order in (TMTTF)2X by Partial Anion Substitution,
A. Pustogow, D. Dizdarevic, S. Erfort, O. Iakutkina, V. Merkl, G. Untereiner, and M. Dressel
Crystals 11, 1545 (2021),
DOI:10.3390/cryst11121545.
Published in the Special Issue "New Spin on Metal-Insulator Transitions"
32. Pressure-Tuned Superconducting Dome in Chemically-Substituted κ-(BEDT-TTF)2Cu2(CN)3,
Y. Saito, A. Löhle, A. Kawamoto, A. Pustogow, and M. Dressel
Crystals 11, 817 (2021),
DOI:10.3390/cryst11070817.
31. Evidence for even parity unconventional superconductivity in Sr2RuO4,
A. Chronister*, A. Pustogow*, N. Kikugawa, D. A. Sokolov, F. Jerzembeck, C. W. Hicks, A. P. Mackenzie, E. D. Bauer and S. E. Brown
Proc. Natl. Acad. Sci. 118, e2025313118 (2021),
DOI:10.1073/pnas.2025313118, arXiv:2007.13730.
See also:
An unconventional superconductor isn't so odd after all, A. Lopatka, Physics Today 74, 9, 14-16 (2021)
Recent Highlights: Tipping point of triplet pairing
Press Release of TU Wien: Exotische Supraleiter: Das Geheimnis, das keines ist (English version: Exotic superconductors: The Secret that wasn’t there)
Article on ORF.at: „Exotische“ Supraleitung doch gewöhnlich
Article in Wiener Zeitung: Exotische Supraleiter: Das Geheimnis, das keines ist
30. Chemical tuning of molecular quantum materials κ-[(BEDT-TTF)1-x(BEDT-STF)x]2Cu2(CN)3: from the Mott-insulating quantum spin liquid to metallic Fermi liquid,
Y. Saito, R. Rösslhuber, A. Löhle, M. Sanz Alonso, M. Wenzel, A. Kawamoto, A. Pustogow, and M. Dressel,
Journal of Materials Chemistry C 9, 10841-10850 (2021),
DOI:10.1039/D1TC00785H, arXiv:1911.06766.
29. Gapped magnetic ground state in quantum-spin-liquid candidate κ-(BEDT-TTF)2Cu2(CN)3,
B. Miksch, A. Pustogow, M. Javaheri Rahim, A. A. Bardin, K. Kanoda, J. A. Schlueter, R. Hübner, M. Scheffler, and M. Dressel
Science 372, 276-279 (2021),
DOI:10.1126/science.abc6363, arXiv:2010.16155.
See also:
Recent Highlights: No metal without charge
Press Release of TU Wien: Neue Messungen stellen Spin-Flüssigkeiten in Frage (English version: New measurements call spin liquids into question)
Press Release of Universität Stuttgart: Quantenspins: Und sie paaren sich doch! (English version: Quantum Spins: And yet they pair!)
Article in The Academic Times: Two-decade disagreement on quantum spin liquids put to rest with new findings
Article in Physics World: Promising quantum spin liquid candidate may fall short
28. Rise and fall of Landau’s quasiparticles while approaching the Mott transition,
A. Pustogow, Y. Saito, A. Löhle, M. Sanz Alonso, A. Kawamoto, V. Dobrosavljević, M. Dressel, and S. Fratini
Nat. Commun. 12, 1571 (2021),
DOI:10.1038/s41467-021-21741-z, arXiv:2101.07201.
See also:
Recent Highlights: How do good metals turn bad?
Press Release of TU Wien: Wie werden gute Metalle schlecht? (English version; How do good metals go bad?)
Article in Physics World: Bad metals turn over a new leaf
Coverage in public media: Der Standard
27. Phase coexistence at the first-order Mott transition revealed by pressure-dependent dielectric spectroscopy of κ-(BEDT-TTF)2Cu2(CN)3,
R. Rösslhuber, A. Pustogow, E. Uykur, A. Böhme, A. Löhle, R. Hübner, J. A. Schlueter, Y. Tan, V. Dobrosavljević, and M. Dressel
Phys. Rev. B 103, 125111 (2021),
DOI:10.1103/PhysRevB.103.125111, arXiv:1911.12273.
26. Low-Temperature Dielectric Anomalies at the Mott Insulator-Metal Transition,
A. Pustogow*, R. Rösslhuber*, Y. Tan*, E. Uykur, M. Wenzel, A. Böhme, A. Löhle, R. Hübner, Y. Saito, A. Kawamoto, J. A. Schlueter, V. Dobrosavljević, and M. Dressel
npj Quantum Mater. 6, 9 (2021),
DOI:10.1038/s41535-020-00307-0, arXiv:1907.04437.
2020
25. Disorder and Slowing Magnetic Dynamics in κ-(BEDT-TTF)2Hg(SCN)2Br,
T. Le, A. Pustogow, Jierong Wang, A. Henderson, J. A. Schlueter, and S. E. Brown
Phys. Rev. B 102, 184417 (2020),
DOI:10.1103/PhysRevB.102.184417.
24. Lattice dynamics in the spin-1/2 frustrated kagome compound herbertsmithite,
Ying Li*, A. Pustogow*, M. Bories, P. Puphal, C. Krellner, M. Dressel, and R. Valentí
Phys. Rev. B 101, 161115(R) (2020) [Editors’ Suggestion],
DOI:10.1103/PhysRevB.101.161115, arXiv:2002.04042.
23. Impurity Moments Conceal Low-Energy Relaxation of Quantum Spin Liquids,
A. Pustogow, T. Le, H.-H. Wang, Y. Luo, E. Gati, H. Schubert, M. Lang, and S. E. Brown
Phys. Rev. B 101, 140401(R) (2020),
DOI:10.1103/PhysRevB.101.140401, arXiv:1911.02057.
2019
22. Constraints on the superconducting order parameter in Sr2RuO4 from oxygen-17 nuclear magnetic resonance,
A. Pustogow*, Y. Luo*, A. Chronister, Y.-S. Su, D. A. Sokolov, F. Jerzembeck, A. P. Mackenzie, C. W. Hicks, N. Kikugawa, S. Raghu, E. D. Bauer, and S. E. Brown
Nature 574, 72–75 (2019),
DOI:10.1038/s41586-019-1596-2, arXiv:1904.00047.
See also:
Triplet no more, D. Abergel, Nat. Phys. 15, 1105 (2019)
Solving a Puzzle of Unconventional Superconductivity
Rewriting the story of unconventional superconductivity of Sr2RuO4: twenty year old result overturned
21. Normal state 17O NMR studies of Sr2RuO4 under uniaxial stress,
Y. Luo, A. Pustogow, P. Guzman, A. P. Dioguardi, S. M. Thomas, F. Ronning, N. Kikugawa, D. A. Sokolov, F. Jerzembeck, A. P. Mackenzie, C.W. Hicks, E. D. Bauer, I. I. Mazin, and S. E. Brown
Phys. Rev. X 9, 021044 (2019),
DOI:10.1103/PhysRevX.9.021044, arXiv:1810.01209.
20. Charge order in β″-phase BEDT-TTF salts,
A. Pustogow, K. Treptow, A. Rohwer, Y. Saito, M. Sanz Alonso, A. Löhle, J. A. Schlueter, and M. Dressel
Phys. Rev. B 99, 155144 (2019),
DOI:10.1103/PhysRevB.99.155144.
19. Coexistence of charge order and superconductivity in β″-(BEDT-TTF)2SF5CH2CF2SO3,
A. Pustogow, Y. Saito, A. Rohwer, J. A. Schlueter, and M. Dressel
Phys. Rev. B 99, 140509(R) (2019),
DOI:10.1103/PhysRevB.99.140509.
18. Transition of a pristine Mott insulator to a correlated Fermi liquid: Pressure-dependent optical investigations of a quantum spin liquid,
W. Li, A. Pustogow, R. Kato, and M. Dressel
Phys. Rev. B 99, 115137 (2019),
DOI:10.1103/PhysRevB.99.115137, arXiv:1901.11280.
17. Tuning of a Kagome Magnet: Insulating Ground State in Ga-Substituted Cu4(OH)6Cl2,
P. Puphal, K. M. Ranjith, A. Pustogow, M. Müller, A. Rogalev, K. Kummer, J.-C. Orain, C. Baines, M. Baenitz, M. Dressel, E. Kermarrec, F. Bert, P. Mendels, and C. Krellner
Phys. Status Solidi B 2019, 1800663 (2019),
DOI:10.1002/pssb.201800663, arXiv:1811.02462.
2018
16. Internal strain tunes electronic correlations on the nanoscale,
A. Pustogow*, A. S. McLeod*, Y. Saito, D. N. Basov and M. Dressel
Sci. Adv. 4, eaau9123 (2018),
DOI:10.1126/sciadv.aau9123.
See also:
Beim Phasenübergang benutzen die Elektronen den Zebrastreifen
15. Weak ferromagnetism and glassy state in κ-(BEDT-TTF)2Hg(SCN)2Br,
M. Hemmida, H.-A. K. von Nidda, B. Miksch, L. L. Samoilenko, A. Pustogow, S. Widmann, A. Henderson, T. Siegrist, J. A. Schlueter, A. Loidl, and M. Dressel
Phys. Rev. B 98, 241202(R) (2018),
DOI:10.1103/PhysRevB.98.241202, arXiv:1710.04028.
14. Quantum Spin Liquids Unveil the Genuine Mott State,
A. Pustogow, M. Bories, A. Löhle, R. Rösslhuber, E. Zhukova, B. Gorshunov, S. Tomić, J. A. Schlueter, R. Hübner, T. Hiramatsu, Y. Yoshida, G. Saito, R. Kato, T.-H. Lee, V. Dobrosavljević, S. Fratini, and M. Dressel
Nat. Mater. 17, 773-777 (2018),
DOI:10.1038/s41563-018-0140-3, arXiv:1710.07241.
See also:
Physiker der Universität Stuttgart erforschen Mott-Isolatoren: Wenn der elektrische Strom stecken bleibt
13. Low-Energy Excitations in Quantum Spin Liquids Identified by Optical Spectroscopy,
A. Pustogow, Y. Saito, E. Zhukova, B. Gorshunov, R. Kato, T.-H. Lee, S. Fratini, V. Dobrosavljević, and M. Dressel
Phys. Rev. Lett. 121, 056402 (2018),
DOI:10.1103/PhysRevLett.121.056402, arXiv:1803.01553.
12. Detuning the honeycomb of α-RuCl3: Pressure-dependent optical studies reveal broken symmetry,
T. Biesner, S. Biswas, W. Li, Y. Saito, A. Pustogow, M. Altmeyer, A. U. B. Wolter, B. Büchner, M. Roslova, T. Doert, S. M. Winter, R. Valentí, and M. Dressel
Phys. Rev. B 97, 220401(R) (2018),
DOI:10.1103/PhysRevB.97.220401, arXiv:1802.10060.
11. Importance of van der Waals interactions and cation-anion coupling in an organic quantum spin liquid,
P. Lazić, M. Pinterić, D. Rivas Góngora, A. Pustogow, K. Treptow, T. Ivek, O. Milat, B. Gumhalter, N. Doslić, M. Dressel, and S. Tomić
Phys. Rev. B 97, 245134 (2018),
DOI:10.1103/PhysRevB.97.245134, arXiv:1710.01942.
10. Electrodynamics in Organic Dimer Insulators Close to Mott Critical Point,
M. Pinterić, D. Rivas Góngora, Z. Rapljenović, T. Ivek, M. Culo, B. Korin-Hamzić, O. Milat, B. Gumhalter, P. Lazić, M. Sanz Alonso, W. Li, A. Pustogow, G. Gorgen Lesseux, M. Dressel, and S. Tomić
Crystals 8, 190 (2018),
DOI:10.3390/cryst8050190.
9. Electrodynamics of quantum spin liquids,
M. Dressel and A. Pustogow
J. Phys.: Condens. Matter 30, 203001 (2018),
DOI:10.1088/1361-648X/aabc1f, arXiv:1804.10702.
8. Structural and Electronic Properties of (TMTTF)2X Salts with Tetrahedral Anions,
R. Rösslhuber, E. Rose, T. Ivek, A. Pustogow, T. Breier, M. Geiger, K. Schrem, G. Untereiner and M. Dressel
Crystals 8, 121 (2018),
DOI:10.3390/cryst8030121.
2017
7. Nature of optical excitations in the frustrated kagome compound Herbertsmithite,
A. Pustogow*, Ying Li*, I. Voloshenko, P. Puphal, C. Krellner, I. I. Mazin, M. Dressel, and R. Valentí
Phys. Rev. B 96, 241114(R) (2017),
DOI:10.1103/PhysRevB.96.241114, arXiv:1711.11340.
6. Strong magnetic frustration in Y3Cu9(OH)19Cl8: a distorted kagome antiferromagnet,
P. Puphal, M. Bolte, D. Sheptyakov, A. Pustogow, K. Kliemt, M. Dressel, M. Baenitz, and C. Krellner
J. Mater. Chem. C 5, 2629 (2017),
DOI:10.1039/C6TC05110C, arXiv:1702.01036.
5. Raman spectroscopy evidence of domain walls in the organic electronic ferroelectrics (TMTTF)2X (X=SbF6,AsF6,PF6),
R. Swietlik, B. Barszcz, A. Pustogow, and M. Dressel
Phys. Rev. B 95, 085205 (2017),
DOI:10.1103/PhysRevB.95.085205.
4. Pressure-dependent optical investigations of Fabre salts in the charge-ordered state,
I. Voloshenko, M. Herter, R. Beyer, A. Pustogow and M. Dressel
J. Phys.: Condens. Matter 29, 115601 (2017),
DOI:10.1088/1361-648x/aa579c.
2016
3. Electronic correlations versus lattice interactions: Interplay of charge and anion orders in (TMTTF)2X,
A. Pustogow, T. Peterseim, S. Kolatschek, L. Engel, and M. Dressel
Phys. Rev. B 94, 195125 (2016),
DOI:10.1103/PhysRevB.94.195125.
2. Anion effects on electronic structure and electrodynamic properties of the Mott insulator κ-(BEDT-TTF)2Ag2(CN)3,
M. Pinterić, P. Lazić, A. Pustogow, T. Ivek, M. Kuvezdić, O. Milat, B. Gumhalter, M. Basletic, M. Culo, B. Korin-Hamzić, A. Löhle, R. Hübner, M. Sanz Alonso, T. Hiramatsu, Y. Yoshida, G. Saito, M. Dressel, and S. Tomić
Phys. Rev. B 94, 161105(R) (2016),
DOI:10.1103/PhysRevB.94.161105, arXiv:1607.07596.
1. Lattice vibrations of the charge-transfer salt κ-(BEDT-TTF)2Cu2(CN)3: Comprehensive explanation of the electrodynamic response in a spin-liquid compound,
M. Dressel, P. Lazić, A. Pustogow, E. Zhukova, B. Gorshunov, J. A. Schlueter, O. Milat, B. Gumhalter, and S. Tomić
Phys. Rev. B 93, 081201(R) (2016),
DOI:10.1103/PhysRevB.93.081201, arXiv:1601.04926.